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Abstract 

Lagrange scalar densities which are concomitants of a pseudo-Riemannian metric-tensor, 
a scalar field and their derivatives of arbitrary order are considered. The most general 
second-order Euler-Lagrange tensors derivable from such a Lagrangian in a four- 
dimensional space are constructed, and it is shown that these Euler-Lagrange tensors 
may be obtained from a Lagrangian which is at most of second order in the derivatives 
of the field functions. 

1. Introduction 

Our considerat ions  will be based upon  a real, four-dimensional ,  C = 
dif ferent iable  mani fo ld  M. It  will be assumed that  all field funct ions  are 
def ined global ly;  however ,  our w o r k  will be of  a purely local nature.  By a 
p seudo-Riemann ian  met r ic  for M we shall mean  a C = symmet r i c  (0, 2) tensor  
field on M which  associates a non-degenerate ,  symmet r ic  bil inear fo rm to  each 
fibre o f  the tangent  bundle  o fM.  I f x  (=x z) is a chart  for M the componen t s  o f  
the met r ic  will be deno ted  by gii, where Lat in  indices run f rom 1 to  4. The 
coeff ic ients  o f  the Chris toffel  connec t ion  de te rmined  by gii are 

r / k  = ½g  (gjh, k + - gj ,h) 

where ~ h  is the mat r ix  inverse ofgii  and an index k (say) preceded by a 
c o m m a  denotes  a partial  derivative wi th  respect  to the local coord ina te  x x. I f  
y i  denotes  the cgmponen t s  o f  an arbitrary vec tor  field o f  class C 2 then the 
componen t s ,  RhZik, of  the Riemann-Chr i s to f fe l  curvature  tensor  are def ined 
by 

Yilj  k - Yillcj = YhRh~ k 

t The summation convention will be used throughout. 
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364 G. W. HORNDESKI 

where a vertical bar preceding an index ] (say) denotes a covariant derivative 
with respect to the Christoffel connection in the direction 3/3x~ Lastly, by 
way of preliminaries, the components of the Ricci tensor, scalar curvature 
and Einstein tensor are defined by 

R h ]  = Rht)i, R = gaiRhj and Gaj  = R h j  - ½ g h j R  

respectively, and g = I det (gq) 1. 
The vacuum field equations of most scalar-tensor field theories are usually 

assumed to be the Euler-Lagrange equations corresponding to some suitably 
chosen Lagrange scalar density which is a concomitant of a pseudo-Riemannian 
metric tensor, a scalar field and their derivatives (for example the Brans-Dicke 
(1961) field theory). Furthermore, it is usually demanded that the field 
equations be at most of second.order in the derivatives of both sets of field 
functions. Recently Horndeski & Lovelock (1972) have shown that in a four- 
dimensional space the most general second-order Euler-Lagrange equations 
which can be derived from a Lagrange scalar density of the form 

L = L(gil;gij, h ;gij, hk; ¢; ¢,i) (1.1) 

(where ¢ is a scalar field) are given byf  

Eab (L )= , acde fb  Ih ]k  x/(g)~l 5fhikg epic Rde 
-- ¼-V/(g)(fl3 + ½p~2)saeC~gebRcd -l'h 

l o  ~acde_ fb . .~  .~lhD jk + ~/(g)({Ja" + zCp2)~,yhjkgtelcW r, de 
1 acd eb f Ih ~ ac db le +gN/(g)[326efhg ¢c  Ca + ~/(g)f138deg ¢1c 
1 r aed eb If  lh 

+ " 2 v / ( g ) ~ 2 g ) e y h g  ~blc¢ ¢td + v/(g)(Pfl3 ' ' -  117)g ab 
. . . .  ¢la g/)lb + ~/(g)(r~- 03 ) (1.2) 

and 

E(L) = - -v/(g)~l'(R2 - 4RqR # + Rm]kR hi/k) 

+ x/(g)(132'¢La¢ltj + 2[32¢laa)G ab - x/(g)(33'R 

+ 2~/(g)(ip'p + 2~blaqsIb¢lab + r/gab~blab -- ½r?') 

where/31, ~2 and/33 are arbitrary functions of ¢, r7 is a function of ¢ and 
p(= ~,i~,jgii), a prime denotes a partial derivative with respect to ¢, a dot 
denotes a partial derivative with respect to p and for h >f 2 the generalised 
Kronecker delta is defined by 

(1.3) 

g~; "''ih...& =det  
t il it 1 8/ ,  " " " 8 ] h  

I a ( a  a ( ~  | 
! v }  i . . . .  l h  | 

t Indices will be 'lowered' and 'raised' by means of the metric and its inverse 
respectively. 
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Furthermore they established that the most general Lagrangian of the form 
(1.1) which yields (1.2) and (1.3) as its Euler-Lagrange tensors is given by 

_ 1 abcd e f  hi 1 abc [cl e f  L - ~ IN/ (g ) f l l~e fh iRab  Rod -- 7, N//(g)fl2[JdefOla(9 Rbc 
1 ab c d  +:x/(g)~aScclRab + %/(g)~?+ceabcaRPqabRqpc a (1.4) 

where e abca is the four-dimensional Levi-Civita symbol and C is a constant. 
However, the above result does not imply that (1.2) and (1.3) represent 

the most general second-order Euler-Lagrange tensors one could ever possibly 
obtain (in a four-dimensional space) from a variational principle in which the 
field functions are the components of a pseudo-Riemannian metric tensor 
and a scalar field. The purpose of this paper is to construct the most general 
second-order Euler-Lagrange equations which can be obtained from a Lagrange 
scalar density of  the form 

L = L (g i i  ;gi],i I ; . . . ; g i j ,  i r . . i  p ;~b; ~,ii ; . . . ;  qS, ii... iq) (1.5) 

(where p, q >~ 2) in a space o f four-dimensions. I shall now indicate the method 
which will be employed to construct these most general second-order Euler- 
Lagrange equations. 

The Euler-Lagrange tensors associated with (1.5) are given by 

P 
Eli(L) = ~ (_l )h+ 1 d .. d 3L (1.6) 

dxi~ dx ih  ~gi~il . . . i  h 
h=o 

and 
q 

d d 3L 
E(L)= ~ ( - 1 )  n+I "- (1.7) 

dx i l  dx ih  ~ , i l . . . i  h 
h=O 

where (1.6) is obtained from (1.5) through a variation of the gq's regarding 4~ 
(and its derivatives) as an arbitrary preassigned function of position, and (1.7) 
is obtained from (t .5) through a variation of ~ regarding the gij's (and their 
derivatives) as arbitrary preassigned functions of position. It should be noted 
that in general Eq(L) is of 2pth order in the derivatives ofgq and of  (p + q)th 
order in the derivatives of ~; whereas E(L) is of 2qth order in the derivatives 
of ~ and of (p + q)th order in the derivatives ofgij. 

Using techniques similar to those e..mployed by du Plessis (1969) it can be 
shown (see Homdeski (1973)) that EV(L) and E(L) are related by 

E'(L)tj = ½~ iE(L) (1.8) 
This result generalises a similar identity (Horndeski & Lovelock (1972)), and 
shows that the Euler-Lagrange equation, E(L) = 0, is a consequence of the 
Euler-Lagrange equations Eli(L) = O. 

We shall now demand that both EiJ(L) and E(L) be at most of second-order 
in the derivatives of both gq and 4~. In general ifEq(L)is of second-order then 
Eq(L)I ] will be of third order, however, due to (1.8), we see that under the 
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above restrictions EII(L)I] must be of second-order. This places a severe con- 
straint upon Eq(L) and leads us to consider the following problem: In a space 
of dimension 4 find the most general symmetric tensor density of the form 

Ai]= Nil(gab ;gab, c;gab, cd; ¢; ¢,e ; ¢,ed) (1.9) 

which is such that 

A'71j = Ai] l/(gab;gab, c ;gab, ca; ¢; ¢,c ; (~,cd) (1.10) 

In the light of the above observations it is clear that the E i/we seek will be 
contained in the above Ai~ Section 2 is devoted to constructing the most 
general A/j which satisfies (1.9) and (1.10) in a space of four-dimensions. The 
A//so constructed will be shown to involve ten arbitrary functions of ¢ and p. 

Now ifA//were in fact the Euler-Lagrange tensor (i.e., the E//) of  some 
Lagrangian of the form (1.5) then due to (1.8) we should be able to express 
Ai]lj as follows 

A'71i = ¢tiA (1.11) 

where A is a scalar density of the form 

A = A(gab;gab, c;gab, cd; ¢; ¢,c; ¢,ccl) (1.12) 

However, the symmetric tensor density constructed in Section 2 does not 
satisfy (1.11) identically. Nevertheless, when we demand that (1.1 l)  be satis- 
fied we obtain a system of six first-order partial differential equations relating 
the ten arbitrary functions of  ~b and p which appear in Ai]. The paper concludes 
by showing that when the ten arbitrary functions appearing in Aii are so 
related Aii is indeed the Euler-Lagrange tensor of a suitably chosen Lagrange 
scalar density of the form (1.5) with p = q = 2. This in turn resolves the original 
problem of determining the most general second-order EuIer-Lagrange tensors 
which may be obtained from a Lagrangian of the form (1.5) in a space of four 
dimensions. 

Remark: It should be noted that the approach taken in the consideration 
of the above problem is quite similar to the one used by Lovelock (1970b, 
1971) where he constructs all tensor densities J i i  of the form 

J i ]  =Jii(ghk ;ghk, c;ghk, ca) 
which are such that 

d~Jls • = 0 

Lovetock has also shown that all such J q  are the Euler-Lagrange tensors 
corresponding to a Lagrange scalar density of the form 

L = L(ghk;ghg, c ;gkn, cd) 

2. The Construction o f  Certain Symmetric Tensor Densities 

In this section we wish to construct (in a four-dimensional space) all sym- 
metric contravariant tensor densities of rank 2 which have their components, 
Ai], satisfying the following conditions: 
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(i) A q is of the form 

A i~ =Aii(ghk;ghk, e;ghk, ed; go; go, c; C~,ca) (2.1) 

(ii) The covariant divergence ofAii ,  viz., AiJl], is at most of second-order 
in the derivatives of both gq and ~. 

It will be assumed that Ai~ and all other functions which arise in this paper, 
have as many continuous derivatives as we wish. 

Due to equation (2.1)we see that condition (ii)is equivalent to 

aAi/ll - 0 (2.2) 
0gr~ rou 

and 

aAqlJ - 0 

In order to simplify the form of the ensuing expressions we adopt the 
following notation: If 

B::: = B:::(ghk;ghk, c;ghk, ca; ~; go, c; ~,ca ) 

is any quantity then we define 

(2.3) 

aB::: B:: : ;ab ,  cd = - -  

agab, cd 

and (2.4a) 

B : : : ; a  b _ aB::: 
~ go, ab 

so that, for example, 

and 

aA q 3.4 q A g ; a b ,  cd - , A q;ab 

agab, c d - agO, a; 

Aq;ab;ca, ef;rs = a a ~ Ai  j 
aO, rs aged, el 3go, ab 

(2.4b) 

Since Ai/ i s  a tensor density of the form (2.1) it is easily seen that repeated 
partial differentiation of A# with respect to ga~,ect and C~,a b will yield tensor 
densities. Consequently the quantities presented in equation (2.4b) are ten- 
sorial. Furthermore, since Aql / i s  (in general) a concomitant ofgij and its 
first three derivatives, along with go and its first three derivatives, 3Ai/ij/ag~, tvu 
and aAiJli/aC),rst are tensor densities. Thus equations (2.2) and (2.3) are 
tensorial conditions. 

Since All is a tensor density of the form (2.1)Ai/;ab'ca must satisfy the 
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'invariance identity' (see, e.g. Rund (1964, 1966), du P1essis (1969) or 
Horndeski & Lovelock (1972)): 

Aii;ab, cd + Aij;ac, ab + Aij;acl, be= 0 (2.5) 

Through repeated use of (2.5) in conjunction with the fact that 

A ij'cab,ca = A ii;ba'ca = A i/;ab,ac (2.6) 

it is readily shown that 
Aii;ab, ca = Aij;ca, ab (2.7) 

We shall now turn our attention to equations (2.2) and (2.3). 
Due to the fact that Aii  is a tensor density of the form (2.1) we have 

OAiJ 0Aii 
"" + Aif;ab, cdc, . 

- - -  " + 7 ~ g a b ,  cj ,~ 6ab, cdi A q  li - Ogab gab, l Ogab, e 

OAiJ OAiJ 
+ ~ ~ , / + ~ . a * , a i + A i i ; a b ~ , a b j + A k i P t c  ~ (2.8) 

Thus we see that (2.2) and (2.3) will hold if and only if 

A ij ;ab, c a 8 gab, eai _ 0 (2.9) 
Ogr& tvu 

and 

Aii;ab O0,abi _ 0 (2.10) 
aO, m 

respectively. Upon performing the indicated differentiations we find that (2.9) 
and (2.t0) reduce to 

A iu;r~tv + A  it;mvu + A  iv;r~ut= 0 (2.11) 

and 
A it;rs + A  it;st + A  is;tr = 0 

respectively. 
Thus we have established 

(2.12) 

Theorem 2.1. A s y m m e t r i c  contravariant tensor densi ty  o f  the f o r m  

A i /= Ai/(ghtc ;ghk, c ;ghk, ca; 4; ~,c ; (9,ca) (2.1) 

will  have its covariant divergence, A i j t j ,  being at  m o s t  o f  second-order in the 
derivatives o f  bo th  gi/ and ~b i f  and only  i f  

A iu;rs~tv + A  it;rs'vu + A  iv;rs 'u t= 0 (2.11) 

and 

A it;rs + A  it;st + A  is;tr = 0 (2.12) 
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Due to our previous remarks it should be clear that equations (2.t 1) and 
(2.12) are tensorial equations. 

Through repeated use of equations (2.1 I) and (2.12) in conjunction with 
equations (2.6) and the symmetries ofAq,ab, ed and A ij;ab we may conclude 
that wheneverAq  satisfies conditions (i) and (ii) (see the first paragraph of 
this section) then 

A ij ; ab, ca = A Cd ; ab, ij = A ab ;i~ col (2.13) 

and 

A ij;ab = A  ab;q (2.I4) 

In order to proceed with our study of conditions (i) and (ii) it will be con- 
venient for us to introduce the following definition which is used by Lovelock 
(1970b): A quantity B i l  i 2 " ' ' i 2 h -  l i 2 h " ' i 2 p  03 > 1)  is said to enjoy property 
S if it satisfies the following three conditions: 

(A) it is symmetric in izh_ t i2h for h = 1 . . . . .  p; 
(B) it is symmetric under the interchange of the pair (i l i2) with the pair 

(i2h- I i2h) for h = 2 , . . . ,  p; 
(C) it satisfies the cyclic identity involving any three of the four indices 

( i l i2 ) ( i2h-  li2h) for h = 2 . . . . .  p; e.g., when h = 2 

B i l i 2 i 3 i 4 " " i 2 p  + B i 2 i 3 i l i 4 " " i 2 p  + B i 3 i l i 2 i 4 " " i 2 p  = 0 

A quantity Bab is said to have property S i f B  ab = B ha. 
Using equations (2.5)-(2.7) and (2.1 t)-(2.14) we may conclude that 

Aab;i  l i2 , i3i4 ;... ;i4h-- 3i4h-- 2,i4h-- l i4h ;i4h + l i4h+ 2;...;i4h + 2 k -  l i4h+ 2k 

(2.1s) 

enjoys property S when the non-negative integers h and k are such that 
h + k > ~ O .  

The following result has been established by Lovelock (1970b): 

Lemma 2.1. I f  B i 1 ... i4M+ 2 is any quanti ty which has property S then it 
vanishes whenever three (or more) indices are equal. In particular B i 1... i4M+ 2 
vanishes identically (in a four-dimensional space) i f  M >1 2. 

Upon replacing B i 1 "" i 4 M + 2 ,  in the above lemma, by the tensor density 
introduced in (2.15) we may conclude that 

Corollary 2.1. Whenever k is an even non-negative integer and h + ½k >~ 2 
then 

Aab; i l  i2,i3i4;--- ;i4h - 3i4h -- 2, i4h-- li4h;i4h+ 1 i 4 h +  2;-. .  ;i4h+2k-- 1 i4h  + 2k  = 0 

(2.16) 

Equation (2.16) will permit us to construct the most general symmetric con- 
travariant tensor density of rank 2 which satisfies conditions (i) and (ii) in a 
space of four-dimensions. 
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To begin with when h = 2 and k = 0 we may use (2.16) to conclude that 

A a b ; i l i 2 ' i 3 i 4 ; i S i 6 ' i 7 i 8  = 0 

Upon integrating this expression twice with respect to gca, ef we Fred 

Aab ~¢thedef 
= tJ-- gcd, ef + ~ab (2.17) 

where/3 a~ and ~abcaey are concomitants of gi# gij, t~, 4, 4,i and ~,ii which 
enjoy property S. 

Now it is easily seen that 

~abcde f~  , _ + j a b  gcd, ey - ~ a b c d e f  R e c d f  

where jab is symmetric in a and b and is a concomitant ofg/i , gq, h, 4, 4,i and 
4,i]. Consequently we can write (2.17) as follows: 

Aa b = ~abcder Recaf + ~ab (2.18) 

where ~ab and ~abcctey are functions of gij , go, h, 4, 4,i and 4,ij which possess 
property S. Clearly ~ab and ~abcdef must be tensor densities. 

We shall now show how to construct the/~ab.., in terms of 4lab and tensor 
densities which enjoy property S and are concomitants ofgij , 4 and 4,i- 

To begin with we may combine Corollary 2.I (with k = 2 and h = 1) 
together with equation (2.18) to conclude that 

~ a b c d e f  ;hi = ~ abcde f  ;hi (gi /  ; gij,  h ; O ; 4 , i )  (2.19) 

In order to proceed further it will be necessary to make use of the following 
result (the proof of which may be found in Horndeski (1971)): 

Lemrna 2.2. I f  

is a relative tensor density o f  class C 1 which is o f  contravariant valence r and 
covariant valence s and furthermore is such that 

then 

Ti.t""! r;~'cd - 0 
11 , " ] s  

T !1 "'" ir  = T i l  "'" i r (g i ' ;  0"~ 4 , i )  
l l . - . l s  J l ' - ' i s  I 

Due to Lemma 2.2 equation (2.19) becomes 

~abcde f ;h i  h a b c d e f ; h i ( o  • c~. 
= ~ ~i/ ,  ~, 4,i) 

and thus 

~ abcde f  _ ~abcdefhi  ,~ + ~,abcclef 
-- ~ W, hi  
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where ~abcdefhi iS an arbitrary tensor density with property S and a con- 
comitant of&i,  0 and ¢,i; and the a abcaey are arbitrary functions ofgij, 
gij, h, 0 and ¢,i which enjoy property S. If in the above expression ¢ m is 
replaced by ~51h i + (blrPhri then the tensorial properties of ~abcaef, ~hbcdeChi 
and ~)lhi may be used together with Lemma 2.2 to conclude that 

~abcdef = ~abcdefhi ¢lhi + ~abcdef (2.20) 

where ~abcaef is an arbitrary tensor density with property S and a concomitant 
of gij, 0 and (P,i- 

Similarly equations (2.18) and (2.20) may be employed in conjunction 
with Corollary 2.1 (when h = 0 and k = 4) to show that 

~ab abcdefhi abcdef 
= ~1 ¢[cd¢[ef¢thi + ~ Cfcd¢Ief 

.t,abcd~ ~ab 
+ ~ ~ c d  + (2.21) 

where each ffab,., is an arbitrary tensor density with property S and a con- 
comitant of gi], ¢ and qS, i. 

Combining equations (2.18), (2.20) and (2.21) we find: 

Aab= eabcdefhil? ~ ~ >abcdefD 
*,ecdfWihi - ~ l~ecdf 

abcdefhi ~abcdef~ 
+ ~/ ~lcd¢le[¢lhi + WlcdW{ef 
+ ffabcd¢lcd + ~1 ab (2.22) 

Employing techniques similar to those used in Lovelock (1969, 1970b, 
1971) and Homdeski & Lovelock (1972) it can be shown that the most general 
tensor densities of the form 

Oil'"i2k = Oil ""i2k(gij; O; ~,i) 

(k = 1 , . . . ,  4) which enjoy property S in a space of four-dimensions are given 
by: 

0 ile~ = ~/ (g)c lg  .1i2 + x / ( g ) c 2 ¢ ' q ¢  i2 (2.23) 

Oq*2i3i4 = ~/(g)C3(g/li3~2/4 +g/,i4g/2/3 _ 2gqi2~3/4) 

+ ~¢/(g)C4(¢i1~' i3~ 2i4 + ~ ' i2~ ' i4~1i3  + ~, i1~' i4~2i3 

+ ¢,i2~,i3gil i4 _ 2[¢,i1~,i2gJ3i4 + ¢,i3¢,iej l i2]) (2 .24)  

oit . . . i6  = 1 ~/(g) (CsO, rO's + C6grs){etl l315rci2i4i6s 

+ 6ili3i6r6i2i4i5 s + eili4i5r6i2i3i6 s + 6ili4i6r6 i2i3iSs} (2.25) 
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C7 {6ili3i5i7ei2i4i6i8 + j1 i3 i s i8e i2 i4 i6 i7  
x/(g) 
+ 6 i l i3 i6 i7 j2 i4 i5 i8  + ~1i3i6i8Gi2i4i5i7 + ~2i3i5i76i l i4i6i8 

Jr Gi2i3i5i8eili4i6i7 + ei2i3i6i76il i4i5i8 + ei2i3i6i8ei l i4is i7}  

(2.26) 

where C 1 . . . . .  C7 are arbitrary functions of ~b and p(= (~,i~,]gi/). 
Making use of equations (2.23)-(2.26) together with the symmetry proper- 

ties of the Riemann-Christoffel curvature tensor we find, after much simplifica- 
tion, that (2.22) becomes 

Aab acde lh "k acd eb = N/(g){KtSfibjkgt'bOic Rde ! +K28eyhg Rcaf h 
acde fb Ih ]k aerie fb h I] k + KaSfhikg ¢lc~ Rae + K48fhitcg ¢c ~ d ~ e 

re- ~acd_eb,~ {f,t, h acde fib h j Ik +'~'5t'efhg ~Ulc ~d +K68fhlkg 0c(9 ~a ~e 
t~ ~ac _db.~ [e acd eb If h +"TUde~ Wlc +K88efibg ~bc~ ~d +K9g ab 

+ KlOd)lad) Ib} (2.27) 

where K 1 , . . . ,  K10 are arbitrary differentiable functions of ~b and p. 
Thus we have established 

Theorem 2.2. In a space o f  dimension four the most general symmetric 
contravariant tensor density of  the form 

Aab Aab ; ; ; = (gt/;giLh;gi/,ak (~ dP, a O, hk) 

which is such that Aablb is at most o f  second-order in the derivatives o f  both 
gi/ and ~ is given by equation (2.27). 

3. The Consequences o f  Demanding that Aablb = ¢laA 

In the introduction it was pointed out that if the contravariant components, 
A ab, of a symmetric tensor density are of the form 

Aa b = AaO (gi/; gij, h ; gij ' hk;O;q5 h;¢,hk) (3.1) 

and furthermore are such t h a t  Aablb is at most of second-order in the 
derivatives of both gij and ~b then a necessary condition for A ab to be the 
Euler-Lagrange tensor of some Lagrange scalar density of the form (I.5) is 
that there exists a scalar density A for which 

Aabtb = ~la A (3.2) 

with 

A = A ( g i j ; g i i ,  h ; gij, hk ; 4; ~,h; ~,hk) 
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Obviously those contravariant symmetric tensor densities of rank 2 which 
have their components satisfying (3.1) and (3.2) are contained in the class of 
symmetric tensor densities of  rank 2 with components, A ab, being of the form 
(3.1) and such that Aablb is at most of second-order in the derivatives of both 
gq and C. At the end of the preceding section the most general element of the 
latter class of tensor densities was presented for spaces of four-dimensions. We 
shall now proceed to examine the divergence of this tensor and as a consequence 
determine the necessary and sufficient conditions under which it is of the form 
(3.2). 

Using equation (2.27) in conjunction with the Ricci and Bianchi identities 
we find, after rearrangement, that 

r acde I f  th j k  " acd Ipe Aablb = X/(g){K1f.fhjtcC ¢Ic Rde + 2K26efh¢lpC Rea ¢'n 
+ ~r ~acde~.lh.~. I f o  ]k acd m fe  ]h ,,~3"~jkw ~'lc ~Xcte +Ks~e~¢ Rme Ca } 

" acde p f  h ]k + ~/(g)(2K~fhikClp¢ ¢~ Rae 
3 acde Im h f  ] lk 

+'2K4~yh]k ¢ R m c  ¢ d C e 
1 acde lm h f  ]k f ~ '  5:acd.~[eD f i t  

+ ~ ¢ / ( g ) K 1 6 [ h j k ¢  R m e  Rde  + v/(g)a.,~,2UeyhW ~txccI 

lrp ~:ac~.lmo ed l  ½N/(g)g8~ea~ClcClfClrnRmdhe + "~t~-7UdeV? .~mc .t + 

+ x/(g) (2G~7~@,4PrcJhR ,d  k 
+ aerie h lrn rf k 

g 6 ~ f h j k ~ )  cC C Rrna 1 ¢ e } + \/(g){g~46~Yhf~cClfClelhCtdtJCle lk 

" acd pe f h +2KsSe.fhCpC ¢e Ca 
acde h f / k 

+ K 6 ~ f h ] k C  ~ e  Clot Cle } 

+ 2N/(g)Ks6ac~clpc' fPeCleClf(ald lh 

• acde p.f h I/ Ik +2X/(g)K6~fhjkCp¢ ¢~¢ Ca ¢e 
" aerie p f  h 1] Ik 

+ 2"v / (g )g4 t~ fh j kCpC C c  O d  C e  

+ ,~/(g)(K's6aeC~le@clY¢idta + 2K76ae ac p¢Ipa¢ c e 
aed f [e Ih + K88efh¢ C c ¢ d }+ x/(g){(2k9+K1o)ClbC lab 

+ ~ '  gacMd.,~ e'l 
'~'7~'de~ ~P c .~ + ~ ( g ) ¢ l a  {K'9 + PKrlo + 2[~lOClb¢lCClbc 

+ KloClc Ic} (3.3) 

where a prime denotes a partial derivative with respect to C and a dot denotes 
a partial derivative with respect to p. 

Using the fact that in a space of four-dimensionst 

~ abede .~l f D hj rJ km 
fh/krnW .tXbc ~'Xcle = 0 (3.4) 

~ a b c d e . d f ~  Ih.~ l i d  km 
.fhjkrn°/ ~]b ~le ~ d e  = 0 (3.5) 

t This type of approach to the derivation of dimensionally dependent identities is 

due to Lovelock (1967, 1970a). 
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and 
~abcde .tlfa, Ih.k I]~. Ik.~ Im /~i~m~ ~lb ~lc ~la tele =0  (3.6) 

together with the symmetry properties of the generalised Kronecker delta it 
can be shown that (3.3) may be rewritten as follows: 

Aabtb = %/(g)~la a + ~/(g) {a 6 ~ C l a  ¢lclhRaeik 
+ fl ~h~]~c¢lCdPlclhRd]k ace pf d jk - - 7 6 f / k e p t  ¢c¢  Role 

abce p ]h [k tm . ~ac.4.lmD ed + eSh]lcrn~ Rpb ¢ c  C e + t.ZOdeq ) .t~.mc 
ade p X I/ k +PSf]k¢ qSp Cd Ce +2W~e¢lP~)lpld¢lc[e 

+ ~ ¢1p¢ lap) (3.7) 

• bcde h t ] km Q= K l ~ h ] k m ¢ l b  ¢ c R d e  
K "~scde~) fR ]k " cde Ip + (K'I - 3) fik c de -- 2KBS~qk¢ ~)[plf(91cRdj k 

t,." ~cde.t, a . lmD ff .~ lk 1 bcde hi km 
--~t~6 f ]k~tcW lxmct q~le --~Kl~h]krnRlw Rde 

t cd + K25fhRcd17~ i t ,  ~cdz .tired he -- "~Lx 8O eh V?lc W aXmd 
" cd Ipe Ih " bcde h ] Ik m 

- - 2 K s ~ e h ¢ l p ¢  ¢lcdPtcl + ½ K 4 5 h i k m C b  dPc C d  ~te 
• cde IP f j Ik --2K68fjk(P ¢p  dPcCd C e  

+ (K'4 cde h ] k + (K's K8) f~¢lc l f¢ ld~ -- K6)~hikdPlc Old ¢ e 

+ K'9 + PK'lo + 2[£10(~lb¢lc(~lbc + (KIo + K'7)¢lc lc (3.8) 

" t + " N~ 
c~=2K'1 - 2 K 3 + K s  +PK6; /3=2K2 - K I + K 3  2pK3 

/ 

7 4/£3 + K6; e = 2/£ 1 + ~K4; p = 2K~ + ½K7 + ½pKs~ 

v 2K s + 3K 6 - 3K~ + 2p/~6; a~ = K7 - K~ + Ks + pKs ( ( 3 . 9 )  

) and 

= 2K9 + K l o -  K~ 

In the light of equation (3.7) it is clear that Aabtb will satisfy (3.2) if and 
only if there exists a scalar density B of the form 

B = B(ei];gi],h ;gi],hk; ~9; ¢,i; ¢,i]) (3.10) 

which is such that 

¢la B = N / ( g ) . [ O t $ ~ ¢ l a  ¢ lc lnRde/k  + ~ 6 h j k  C ~ clhRdeJk 

- ~ /  5~Tc~¢lp¢lpt dpIc¢laRae i k  " = . gabce .4,[P D..pbJh .~,4,1c K.~W e tm 

s:ac..,.ImD ed ade IP f l ]  Ik 
+ldOde~P lXme + I / ~ f j k O  ~)p (gd C e  

+ 2w 8~CeOlpO[p]d¢lc[e "4- ~ ~[p~lap) (3.11) 

where 



SECOND-ORDER SCALAR-TENSOR FIELD EQUATIONS 375 

Equation (3.11) must hold at every point of  our manifold M (since the 
field functions were assumed to be globally defined and we are working on 
the domain of  an arbitrary coordinate chart) and for every pseudo-Riemannian 
metric and scalar field defined on M. Furthermore, we are regarding (3.11) as 
an equation to be solved for B. It will now be shown that (3.11) admits a 
solution if and only if 

a =/3 = 7 = e = p =  v=  co = ~ = 0 (3.12) 

and that that solution is 

B = 0  (3.13) 

Clearly if (3.12) holds then the solution to (3. t 1 ) is B = 0. Thus we need only 
show that  if (3.1 I )  admits a solution, B, then (3.12) must hold, and con- 
sequently B must vanish. 

In order to establish this result we begin by differentiating (3.11) once 
with respect to gr~ tv and twice with respect to ¢, uw to obtain 

~2r.~ [k.~ Imx ~R d 
OlaB;iq;uw;rs ,  tu abce Ip U?[c Wle ) _ i d _ h f  pb 'f e,~ t a x  

= e x / ( g ) G i k m ¢  ~ g- g - .  - t ~ .~4 )  

Oq), iq Oq) uw  Ogrs, tv 

It is easily shown that 

aRabcd_ ! rnhiik .,. ,-~aiik _ Dhag~c r~nijk ~ (3.15) 
- 4 \z-"abcd " Lrcadb --  Z-'dacoJ 

aghi, j k  

where 

D m j g  = l t ~ h ~ i  h i j k abca ~ w ~ o a  + 8aS . ) (6ba¢  + 8~6~) (3.16) 

Upon multiplying (3.14) by giqguwgrs we find that equations (3.15) and 
(3.16) may be used to rewrite the resultant expression as follows: 

¢ l a g i q g u w g r s B ; i q ; u w ; r s ,  tv = 4 ~ / ( g ) e ( ¢ t a g  vt  + ~1 tgVa + ~21 v g t a )  (3.17) 

Now given any scalar field there always locally exists a vector field X a for 
which 

~,aX a = 0 

and 

Xa X a  ~ 0 

I f  we now multiply (3.17) by X a X  t we find that 

o = 4ex/¢~)~ ~ 

and hence 

e = 0  

Using similar techniques it can be shown that if (3.11)holds then (3.12) 
must hold and hence B must vanish. 
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Consequently, Aablb, as given in (3.7), will be of the form (3.2) if and only 
if the ten scalar functions Ka . . . . .  Klo appearing in A ab are related by the 
eight partial differential equations obtained by setting each of the quantities 
appearing in (3.9) equal to zero. Of these eight differential equations only six 
are independent because 

and 

v = 28 + 7 - 2e' 

co  = 2 / )  - ~ '  + P3"  - 2/3' 

The remaining six equations imply that the ten functions appearing in A ab 
must be related as follows ifAablb is to satisfy (3.2): 

K4 = -~[C1; Ks = 2 K 3  - 2K'l + 4p/£3; K6 = -4/£3 

K2 = ½F + W; K7 = - 2 F '  - 4W' - pKs; and 

Klo = - 2 F "  - 4W" - pK'8 - 2K9 

(3.18) 

where K1, K3, Ks and K 9 are arbitrary functions o f¢  and p, W is an arbitrary 
function of ¢ and F is given by the following indefinite integral 

F = F ( ¢  ;p)= f ( K ' l ( ( ~ ; p ) - K 3 ( ¢ ; p ) - 2 p K 3 ( ¢ ; p ) ) d p  (3.19) 

Using equations (2.27) and (3.18) we obtain 

Theorem 3.1. In a space o f  dimension ]'our the most  general symmetric  
contravariant tensor density A ab which is a concomitant  o f  gij , and its f irst 
two derivatives, together with ¢, and its f irst  two derivatives, and is such that 
its eovariant divergence, Aab tb, is o f  the form 

A a b l b  = o l a A ( g i j ; g i ] , h  ;g i ] , hk ;  ~ ;  ~ , h ;  ~),hk) 

(where A is a scalar density) is given by 

A ab = %/(g)KlS]~gfb(~lclhRde ]k + N/(g)(½F + W)Se~gebRcd fh 
acde b h ] k 4 " accte h t ] I k + ~/(g)K38~/kg r ¢ c ~  Rde - - 3 x / ( g ) K I S f ~ k g f b O c  ¢icl ¢le 

+ v/(g)(2K3 2K'1 " aca eb f 
- -  + 4pK3)Sefl~g ¢ c  ~la 

• aede h I] Ik -4~/(g)K3517,ixgt~(~ c¢ C d C e 

-- + PKs)Saeg d ¢ c + N/(g)KsSelTzg ¢ c¢ Old ~/(g)(2F' + 4W' ac b e aca eb f h 

+ ~/(g)K9g ab - ,v/(g)(2F '' + 4W" + pK'8 + 2k9)¢laq~ Ib (3.20) 

where Kt ,  K3, K8 and K 9 are  arbitrary scalar fitnctions o f  ¢ and p, W is an 
arbitrary scalar function ore ,  and F is given by equation (3.19). 
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Due to equations (3.7), (3.8) and (3.18) we find that when A ao is given 
by equation (3.20) then 

a " bcde Ill I] k m  
A a b l b  = x / ( g ) ¢  { K 1 6 h j k m ( P  b (9 c R d e  

+ (K'I ~ae r ]k - K3)Sz   c - 2G  f4PCJ  cRj k 

+ 4 " cde [m rf k l r f  ~ bc de  D h i d  k m  
K 3 6 f j k ¢  cdP R m d  I ~) e - -  81X l U h j k m ' t ' b c  ZXde 

+ (½F'  + - -  ~ 8 O e h ~ [ c ~  ~Xmd 
" cd  tpe th 2 "" bcde h j k rn 

- - 2 K a 6 e h ¢ I p ¢  ~Ic¢ld - -  ~ K 1 6 h j k r a ¢  b ¢~c ¢la ¢ e 
"' cde p f j k " 4 " r cde h ] k 

+8Ka3f/x¢ Cp ~bcCd Ce +(4K3--~K1)6hik¢lc  ~)a ¢le 

+ ( 2 K ;  - 2K' ;  + 4p /~ ;  - Ks)6~(Olcl.t'¢lalh + K'9 

- p ( 2 F "  + 4W" + pK~ + 2K;) 

- 2 ( 2 / ~ ' +  K'a + PK'8 + 2Kg)¢lc 4~la (~led 

- (4F" + 8W" + 2pK'8 + 2K9)¢1c Ic} (3.21) 

Remark. Using equations (3.20) and (3.21) it is easy to show that in a 
space of four-dimensions the most general divergence free symmetric tensor 
density of the form (3.1) is given by: 

A ab = v/(g)c26ac~gebRcdf h + X//(g)clg ab 

where c 1 and c2 are arbitrary real constants. Thus in a four-dimensional space 
there does not exist a genuine divergence free tensor density of the form (3.I); 
i.e., A ab must be independent of ¢ and its derivatives if it is to be divergence 
free. 

Employing techniques similar to those used to derive Theorem 3.1 we 
obtain 

Theorem 3.2. In spaces o f  dimension 2 and 3 the most  general symmetric 
contravariant tensor density A ab which is a concomitant o f  gq, and its first 
two derivatives, together with ¢, and its first two derivatives, and is such that 
its covariant divergence, Aablb , is o f  the form 

Aablb = OlaA(gi];giLh ;giLt*k; ¢; ¢,h; ~,hk) 

(where A is a scalar density) is given by 

A ab = x/(g)K16~Cegab¢lcle + ~/(g)(K'l - 2/£2)¢Ia¢ tb + ~/(g)K2g ab 
(3.22) 

in a space o f  dimension 2 and 
acd eb A a b =  N / ( g ) K a 6 e f h g  R c J  h - -  4 N / ( g ) g a 6 a ~ d g e b ¢ l c l f ( 9 1 d l h  

+ 4 K 3 ) 6 d e g  d 0 c + N / / ( g ) g 4 6 e ~ d g e b ¢ l c ( O I f ¢ l d l h  _ % / ( g )  ( p g 4  ' ac b e 

+ v/(g)Ksg ab - x/(g)(pK~ + 4K~ + 2/£s)¢la¢ lb (3.23) 

in a space o f  dimension 3, where K 1 . . . . .  K 5 are arbitrary scalar functions o f  
and p. 
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4. Lagrange Scalar Densities 

As mentioned in the introduction Lovelock (1971) has shown (in a space of 
arbitrary dimension) that i f J  ii is a symmetric tensor density of the form 

~¢ i/ = ~¢i/(ghk ;ghk, c;ghk, ccl ) 

and is such that 

J i i t ]  = 0  

then ~¢ii = Eq(L)  for some Lagrange scalar density of the following type 

L = L (ghk;gnk, c;ghk, ca) 

Furthermore, Lovelock has shown that an L which y ie ldsd / ]  = Eq(L) ,  may 
be obtained by examin ingg i iJ  i]. 

We now desire to determine a Lagrange scalar density of the form (15)  
which yields the symmetric tensor density A ab presented in equation (3.20), 
for a space of dimension 4. As a consequence of the above remark it would 
seem appropriate for us to begin our search with an examination o fL  =gabA ab 
and its associated Euler-Lagrange tensor, Eli(L). (In fact there are general 
grounds for expecting Eli(gab A ab) to be 'related' to A q, see Lovelock (1972)). 

Using equation (3.20) we find that in a space of dimension 4, gabA ab is 
given by: 

g a b A a b =  ~ / / ( g ) ( K 1 6 ~ ¢ l c l h R d e ] k  4 ~  ~cde.~ Ih~ I]~. Ik -- 3~XlUhjktYlc ¢Ptd ~le 
+ r." .~cde.¢. .klho ]k " cde h ] Ik 

l~ 3~,h/k~,lcq, r, de -- 4K36hlk¢ c¢ ¢ d C e 

+ (F + 2 W ) 6 ~ R c j  ~ + 2(2K3 - 2K'  1 + 4P[f3)6~d¢lcif¢ldlh 
c.a ; h -- 3(2F'  + 4W' + pKs)¢lc Iv + 2K88fh¢ e¢ ¢ a 

+ 4K 9 - p(2F"  + 4W" + pKr8 + 2/~9) ) (4.1) 

where F is given by (3.19). 
We now wish to determine the Euler-Lagrange tensor (viz., E ab) corre- 

sponding to the scalar density presented in equation (4.1). Upon a closer 
examination of this Lagrangian we see that in order to determine its Euler- 
Lagrange tensor it would suffice to know 

Eat' ( L c~) 

(c~ = 1 . . . . .  6) in a space of arbitrary dimension, where the L~'s are given by: 

L 1 = ~/(g)M1 q~lc I c (4.2) 

L2 = ~/(g)M26CdrRca e : ' -  4~/(g)l~26~-~¢lclf ¢ldlk (4.3) 

L 3 = %/(g)M36C]¢ic¢fe~id If (4.4) 

L4 = %/(g)M46Cfd~c¢ictfRcle]k 4 " cde If ] Ik -- ~ N/(g)M46f]k ¢ c ¢ d ¢ e (4.5) 
6 ode f ]k Ls  = "v/(g)Ms y']k ¢ c¢ Rde -- 4"~/(g)Ms6~a~¢lc¢If ¢Idli¢lelk (4.6) 
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and 

L 6 = N/(g)M 6 (4.7) 

where M I . . . . .  M 6 are arbitrary functions of go and p, 
Using techniques similar to those employed in Rund (1964, 1966) and 

Horndeski & Lovelock (1972) it can be shown that if 

L = L(gii;gii, h;gii, hk; go; gO, h; ~,hk) (4.8) 

then 

and 

where 

E a b  ( L  ) = _ Trab; hklh k + rgab, hlh _ ,gab 

E(L ) = - - ( ' k l hk  + f l', -- 

(4.9) 

(4.10) 

and 

OL OL 
rr~b, h k  = ; f "  = : 

Ogab, hk ~¢,~t, 
~b,h  = ½(~b¢lh _ f % t ~  _ ~h~db ) 

7tab = l r~ b ~hk, am ~ l x k  m h n  - -  RkamhT(  hk ,bm  

_½gol~lz, _ ¢~,.gol la + ½g.b L 

OL 
= o¢,a + r#A~*  

3L 

(4.11) 

Employing equations (3.15), (3.16), (4.9) and (4.11) we find, after a 
lengthy, but straightforward, calculation, that in a space of any dimension 
(for the details see Homdeski (1973)) 

Eab(L1)= x/(g'plVI 8 ac _abe. le " acd eb If  Ih 
~/'., ) 1 d e g  WIc - -  % / ( g ) M l S e . f h g  golc¢ gold 
+ ~/(g)M,l(½gabp _ gota¢lb) (4.12) 

• acde lh ]k  " 1 acd eb f i t  Eab(L2) =--%/'(g)M26fh]kgrT' golcgo n d e +  x / (g) (pM=-  ~M=)Se~q,g Rcd 

- 2 x/(g)(2p~= + &)8~ygg%j21go~2 ~ 
"" acde h [] k " r ac b le + 4x/(g)M28yh/kgrb¢ ~go go d go e + 2 X/(g)(M~ + 2pM2)Sdeg d gotc 

- - 8  % / ( g ) J V I ~ e ~ g e b  golcdplf gotdlh + 2 x/(g)pM~g ab - 2 x/(g)M~gola¢ Ib 
(4.13) 

3 ac db le Eab(L3) = "~/(g)(P2-~/3 + ~PMa)6deg ¢Ic 
__v/(g)(p~/3 ± 3, . . ,~:acd_eb~..aifu.  Ih ~' ~lv'3)OeY'hg ~g[c~# gald + ½ g / ( g ) M ; p 2 g  ab 

-½ X,/(g)pM'aC la go Ib (4.14) 
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gab (L4) " acd_ef b t j k q =--Nf(g)M48hlklsqg h Oc~ ~d  R e P  

+ x/(g)~/4p ~ffp~ghb¢ldlkReIPq -- ½ x/(g)pM'48e~gebRcd ~ 
t acde h jk + X'/(g)M'45fl~]kgt~¢ c¢ Rde 

4 "" acdef b ] k p Iq +Tx/(g)M4~jkpqg h ¢ c ¢  ¢ d  Ce C f  
__ ~ v/(g) (p/~4 " acde h I] Ik + M4)~fh]kg]7)O c (P d (be 

+ N/(g)(Z~/',~ + 2plff'4)6hd~g~q)lal]¢telk 

--4 x/(g)M'45 ~n~ffc gt"° ¢ic¢ ln ¢ldl i ¢lelk + 2 N/t~)/t~'x/~ 4"t~ efh g acd~eb,~,V.,lc,e,,~tf ~, j 
(4.15) 

gab(Ls) = N//(g)(/~5p 2 + ½PMs)t~e~.~geb.Rc2 h 

M5)t~fhjkg'fb ¢lc¢ Rde 

_x / (g ) (2M 5 + lOp/!)/s + 4p2/~ ",t~acd~eb.;. If.~ Ih 5) efhg ~[c ~'Id 
"" acde h ] k + 4N/(g)(2/lJ/S + PMs)~fhjkgfb¢ c¢ ¢ d ¢ e 
" ' ace "b If r -v/(g)(2M's + 4pMs)6irr~ ¢ c¢ ~ e (4.16) 

and 

Eab ( L 6) = N/(g)~(/16 ¢ta ( ~lb -- ½ N/(g)M6g ab (4.17) 

Making use of equations (4.1) and (4.12)-(4.17) we find that in a space of 
four-dimensions 

Eab (gcd ACd ) = N/(g) p k  l ~ hadkepfqghb ¢ldlk Re f  pq 

• acde fb h ]k rAr~:acd_ebD fh 
+ x/(g)pKaSf~ikg ~c¢  gde  + ~/(g)(½J-,~)Vefh~; ~Xca 

" acde fb h j lk 
--~'~/(g)~p (PK1)~)fhikg $ c  Cd Ce 

" acde  ]h I] Ik pK 6 -4~¢/(g) ~pp ( 3) fh/kgfb¢lc(~ Old (~le 

" + 2 "" ode j Ik +~/(g)(--20/£'1 +6pK3 4p Ka)6f/kg~c~d (be 

+ X//(g)p[fsfa~.dgeb¢tedplY(pldlh + v/(g)(- -2J '  + 4 W ' -  p2/£8) 
x a$ g %iJ + - 2 K 9 ) g  

+ x / ( g ) ( - 2 J "  + 4W" + 2K 9 - 2p]£ 9 - p2k~)¢la¢Ib (4.18) 

where J = J (¢ ;  p) is defined by the indefinite integral 

st / J =  - ~ ( p K l ( ~ ; p ) ) - p ~ 2 3 ( ~ ) ; p ) - 2 p - ~ p  (pk3(~;p))  dp (4.19) 

and integration by parts has been used to show that 

- F  + pF  = J (4.20) 
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Upon comparing equation (4.18) with (3.20) we readily deduce that in a 
space of four-dimensions the symmetric tensor density presented in (3.20) is 
the Euler-Lagrange tensor corresponding to 

. It~'~['7 8cde~ Ih R /to 4 " ede h l/ lk 

cde Ih ik _ 4 ~.. 6cde h / k 

+ "~/(g)(~-+ 2~g/~)8~Rca fh + 2 x/(g)(2,Y,('3 - 2,3("1 + 4pX3)6~OIcI@IJ h 

- 3  %/(g)(2o ~'' + 4"///`' + pO~a)~lc Ic + 2x/(g)af86~le~l'f~lalh 

+ N/(g){4Jf9 - p(2,~'" + 4'~"" + p_o~ + 20/{'9)} 

where 

~= f ~ Ks(O;p)dp; 
~IU= - W 

(4.21) 

and 

(4.22a) 

5 =  f {,~Y"'l(q~; p) -- ff{'3(~;D)-2pX3((~;p)}d p (4.22b) 

To recapitulate the above work we have 

Theorem 4.1. In a space o f  four-dimensions any symmetric contravariant 
tensor density o frank 2 which is a concomitant of  a pseudo-Riemannian metric 
tensor (with components gij), and its first two derivatives, together with a 
scalar fieM ~, and its first two derivatives, and furthermore is such that its 
components, A ab, satisfy 

Aablb = (plaA(gij; gij, h;gij,  hk; d~; O,h; (P, hk) 

is the Euler-Lagrange tensor corresponding to a suitably chosen Lagrange 
scalar density of  the form presented in equation (4.21). 

Remark. The Lagrangian which yields the tensor density mentioned in 
Theorem 4.1 is unique only up to the addition of scalar densities of the form 
(1.5) which yield identically vanishing Euler-Lagrange tensors upon varying 
the gii's. 

As an immediate consequence of Theorem 4.1 we obtain 

Theorem 4.2. In spaces of four-dimensions the most general Euler-Lagrange 
equations which are at most of  second-order in the derivatives of  both gq and 
~, and which are derivable from a Lagrange scalar density of  the form (t.5) 
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can be obtained from the Lagrangian presented in equation (4.21) and are 
given by 

A ab = 0 

and 
ab 

2(~,aA Ib = 0 

P 

where A ab and Aabtb are given by equations (3.20) and (3.21) respectively. 
The above theorem is false in spaces of dimension greater than 4. For if K 

is an arbitrary scalar function of ~b and p 
abcde f hi jk  L = v/(g)K6j,  hijk ~9 a Rbe Rcle 

8 " abcde If h li jk  
- -TN/(g)K~chi jk~)a  ~ b  ~ c  Rde 

"" abcde f [h li l] [k 
+ ~ v / ( g ) K S f h i ] k C a  Cb ¢ c  dPd Ce + ~  

(where ~ is given by equation (4.21)) provides us with a counter-example. 
In the introduction it was pointed out that the most general second-order 

Euler-Lagrange tensors derivable from a Lagrange scalar density of the form 
(I.1) (in a space of four-dimensions) are given by equations (1.2) and ( t . 3 ) ,  
and may be obtained from the Lagrangian (1.4). It should be noted that the 
primary difference between the Euler-Lagrange tensors (1.2), (1.3) and the 
Euler-Lagrange tensors derivable from ~ (viz., (3.20) and 2 x/(g) tim& the 
term appearing within curly brackets on the fight-hand side of (3.21)) lie in 
the following two areas: 

(i) the latter Euler-Lagrange tensors involve a total of five arbitrary 
functions (four are concomitants of ~ and p and one is a function" of 
~b), whereas the former Euler-Lagrange tensors involve only four 
arbitrary functions (one is a concomitant of ~ and p, and three are 
functions of ~b); 

(ii) the latter Euler-Lagrange tensors are much more non-linear in the 
second derivatives of ¢ and gtl than are the former. 

If one were now to demand that the field equations derivable from (4.21) 
be quasi-linear in the second derivatives of both gij and ¢ (in the sense that 
the coefficients ofgij, h k and ~,hk are at most functions ofgij and ~) then it 
is easily shown that a Lagrangian which yields these quasi-linear field equations 
is given by 

: x / (g) ( f l  R +fzP +f3) (4.23) 

(where f l ,  f2 and f3 are arbitrary functions of ~) and the field equations are 

x/ (g)  {f~ c ~  - f~ ~l~b + (f~ _ f~,)~l~epl~, 

+gab [(f;, ... ½f2)P + f;gCCl ~bfed -- ½f31} = 0 (4.24) 

and 

-N, / (g){ f iR  - f~p - 2f2gCCt ~lee + f;} = 0 (4.25) 
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Equations (4.24) and (4.25) embody the most general second-order quasi- 
linear Euler-Lagrange equations which can be derived from a Lagrange scalar 
density of the form (t .5) in a space of four-dimensions. 

The Lagrange scalar density (4.23) is precisely the Lagrangian discussed in 
detail by Bergmann (1968). 

Remark. It is not difficult to prove that in any space of dimension/>4 the 
most general second-order Euler-Lagrange equations derivable from a scalar 
density of the form (1.5) which are in addition quasi-linear in the second 
derivatives of both gq and ¢ are given by equations (4.24) and (4.25) and may 
be obtained from the Bergmann Lagrangian (4.23). 

In conclusion I would like to point out that the tensor densities presented 
in equations (3.22) and (3.23) are the Euler-Lagrange tensors corresponding to 

~2  = N/(g) "//l¢le le + x/(g)(dt"l - 2~ '2 )P  + 2~/(g) Jr'2 (4.26) 

(in a space of two-dimensions) and 

,.~3 = %/(g) d[as ~'d Rcd y~ -- 4 v/(g)~g 36 ~ ¢Ic l f ¢ldlh 
Ud f n +--24(g)(P,~¢4 +4,~3)~1c Ic + %//(g) 4 fh~lc'¢ ~bd 

+ x/(g) [3 d/'S -- (pd¢'~ + 4 J t ~  + 2 .J /s)p]  (4.27) 

(in a space of three-dimensions) respectively, where 

fl. f5 ,.'g/1 = --KI(¢;p)dp; JZ2 =P K2(Gp)dp; 

f 1 Jd 3 = ~(p) ~7~K3((~;p) dp; 
1 

dt4 = - ~  f -~p Ka(¢;p)dp; 

and 

,.gt,s = o3n f 1 7 Ks (~; p) ap 

with K1,.. . ,  K5 being the scalar functions which appear in equations (3.22) 
and (3.23). 

Consequently, in spaces of dimension two and three the most general 
Euler-Lagrange equations which are at most of second order in the derivatives 
of both gii and ¢, and furthermore are derivable from a Lagrange scalar density 
of the form (1.5), may be obtained from the Lagrangians (4.26) and (4.27) 
respectively. 
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