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Abstract

Lagrange scalar densities which are concomitants of a pseudo-Riemannian metric-tensor,
a scalar field and their derivatives of arbitrary order are considered. The most general
second-order Euler~Lagrange tensors derivable from such a Lagrangian in a four-
dimensional space are constructed, and it is shown that these Euler-Lagrange tensors
may be obtained from a Lagrangian which is at most of second order in the derivatives
of the field functions.

1. Introduction

Our considerations will be based upon a real, four-dimensional, C™
differentiable manifold M. It will be assumed that all field functions are
defined globally ; however, our work will be of a purely local nature. By a
pseudo-Riemannian metric for M we shall mean a C* symmetric (0, 2) tensor
field on M which associates a non-degenerate, symmetric bilinear form to each
fibre of the tangent bundle of M. If x (=x*) is a chart for M the components of
the metric will be denoted by g;;, where Latin indices run from 1 to 4. The
coefficients of the Christoffel connection determined by g;; are T

Tk = 38" gk + gxnj — &ix.n)
where g is the matrix inverse of gi; and an index k (say) preceded by a
comma denotes a partial derivative with respect to the local coordinate x*. If
Y? denotes the components of an arbitrary vector field of class C? then the
components, R, ik, of the Riemann-Christoffel curvature tensor are defined
by
Yk — Y=Y "Rk

+ The summation convention will be used throughout.
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364 G. W. HORNDESKI

where a vertical bar preceding an index j {say) denotes a covariant derivative
with respect to the Christoffel connection in the direction 9/0x’. Lastly, by
way of preliminaries, the components of the Ricci tensor, scalar curvature
and FEinstein tensor are defined by

Ry=Ryy,  R=g"Ry;  and  Gpy=Ry—3gnR

respectively, and g = | det (g;7) |.

The vacuum field equations of most scalar-tensor field theories are usually
assumed to be the Euler-Lagrange equations corresponding to some suitably
chosen Lagrange scalar density which is a concomitant of a pseudo-Riemannian
metric tensor. a scalar field and their derivatives (for example the Brans-Dicke
(1961) field theory). Furthermore, it is usually demanded that the field
equations be at most of second-order in the derivatives of both sets of field
functions. Recently Horndeski & Lovelock (1972) have shown that in a four-
dimensional space the most general second-order Euler-Lagrange equations
which can be derived from a Lagrange scalar density of the form

L =L(g;j; 8,1 8ij,nk> 93 9,1) (1.1
(where ¢ is a scalar field) are given byt
E®(L)= /()85 1" Rac’™
() (B3 + $082)5%5 8 "R o™
+Ag)B1" +4B2)8%55 8 910 Ra*
+ %\/(g)525gf%geb¢|clf¢;dm + VAg)Bs8% g7 ¢/
+ 3\ /(2)8,8% 2 91087 010" + \/(8) (085" — 3m)e™
+ (&)@ — B399 (1.2)
and
E(LY=— \/(8)B/(R* — 4Ry R + Ry R"*)
+ V(&) (B2 $1aB1p + 2820106)G? — \(2)B5R
+ 23/ (' p + 2001°¢0 i + 180 dpap — A1) (1.3)

where 84, Ba and §3 are arbitrary functions of ¢, n is a function of ¢ and
(=80 gl»’ ), a prime denotes a partial derjvative with respect to ¢, a dot
denotes a partial derivative with respect to p and for & > 2 the generalised
Kronecker delta is defined by

i i

s g i - O
1* Prd et . -

ip in

87 -8jp

+ Indices will be lowered’ and ‘raised’ by means of the metric and its inverse
respectively.
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Furthermore they established that the most general Lagrangian of the form
(1.1) which yields (1.2) and (1.3) as its Euler-Lagrange tensors is given by

L =3/(8)B:8% 2R 5T Rod — $/(8)B28%50140' Ry
+ 7\/(g)635 Ra?:«Cd + \/(g)ﬁ + Ceadequaqupcd (1.4)

where ¢ is the four-dimensional Levi-Civita symbol and C is a constant.
However, the above result does not imply that (1.2) and (1.3) represent

the most general second-order Euler-Lagrange tensors one could ever possibly

obtain (in a four-dimensional space) from a variational principle in which the

field functions are the components of a pseudo-Riemannian metric tensor

and a scalar field. The purpose of this paper is to construct the most general

second-order Euler-Lagrange equations which can be obtained from a Lagrange

scalar density of the form

L=L(@y: &5 38 ynin 95 iy5 - 80,y (1.5)
(where p, q = 2) in a space of four-dimensions. 1 shall now indicate the method

which will be employed to construct these most general second-order Euler-
Lagrange equations.

The Euler-Lagrange tensors associated with (1.5) are given by

abed

d oL
EHr, Hrd Caxih agn, o |
E(L) = Z( ) dx' dx'™ Ogyi...ip "o
and
q
d d oL
_ ES] T
s S ot gt o
“ svy

where (1.6) is obtained from (1.5) through a variation of the g;;’s regarding ¢
(and its derivatives) as an arbitrary preassigned function of position, and (1.7)
is obtained from (1.5) through a variation of ¢ regarding the g;;’s (and their
derivatives) as arbitrary preassigned functions of position. It should be noted
that in general E¥(L) is of 2pth order in the derivatives of g;; and of (p + ¢)th
order in the derivatives of ¢; whereas £(L) is of 2¢th order in the derivatives
of ¢ and of (p + q)th order in the derivatives of gj;.

Using techniques similar to those employed by du Plessis (1969) it can be
shown (see Horndeski (1973)) that £Y(L) and E(L) are related by

ELy,; =46 'EQ) (1.8)

This result generalises a similar identity (Horndeski & Lovelock (1972)), and
shows that the Euler-Lagrange equation, E(L) = 0, is a consequence of the
Euler-Lagrange equations E¥(L) = 0.

We shall now demand that both E¥(L) and E(L) be at most of second-order
in the derivatives of both g;; and ¢. In general if E¥(L) is of second-order then
E4(L),; will be of third order, however, due to (1.8), we see that under the
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above restrictions £¥(L) ; must be of second-order. This places a severe con-
straint upon E¥ (L) and leads us to consider the following problem: In a space
of dimension 4 find the most general symmetric tensor density of the form

A¥ :Aij(gab s 8ab,c5 8ab,ed> D3 ¢ ¢,cd) (1.9)
which is such that

Aijii = Aijl]'(gab;gab, ¢’ 8ab,cds P30, c3 b .ea) (1.10)

In the light of the above observations it is clear that the E¥ we seek will be
contained in the above A¥. Section 2 is devoted to constructing the most
general A7 which satisfies (1.9) and (1.10) in a space of four-dimensions. The
AY so constructed will be shown to involve ten arbitrary functions of ¢ and p.

Now if A% were in fact the Euler-Lagrange tensor (i.e., the £7) of some
Lagrangian of the form (1.5) then due to (1.8) we should be able to express
A |; as follows

A= ¢l4 (1.11)
where A is a scalar density of the form
A = Agap3 8ab, ¢ s 8ab,cd’> 93 e D, cd) (1.12)

However, the symmetric tensor density constructed in Section 2 does not
satisfy (1.11) identically. Nevertheless, when we demand that (1.11) be satis-
fied we obtain a system of six first-order partial differential equations relating
the ten arbitrary functions of ¢ and p which appear in A¥. The paper concludes
by showing that when the ten arbitrary functions appearing in A% are so
related A¥ is indeed the Euler-Lagrange tensor of a suitably chosen Lagrange
scalay density of the form (1.5) with p = ¢ = 2. This in turn resolves the original
problem of determining the most general second-order Euler-Lagrange tensors
which may be obtained from a Lagrangian of the form (1.5) in a space of four
dimensions.

Remark: It should be noted that the approach taken in the consideration
of the above problem is quite similar to the one used by Lovelock (1970b,
1971) where he constructs all tensor densities &/ of the form

AU =&Q¢ij(ghk;ghk,c§ghk,cd)
which are such that
27 =0
Lovelock has also shown that all such /¥ are the Euler-Lagrange tensors
corresponding to a Lagrange scalar density of the form

L = L{gnk:8nk,c: 8rn,ca)

2. The Construction of Certain Symmetric Tensor Densities

In this section we wish to construct (in a four-dimensional space) all sym-
metric contravariant tensor densities of rank 2 which have their components,
AY, satisfying the following conditions:
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(i) AY is of the form
AY =AY (gn 8k, o Bk, cds D3 D.c5 D, ca) (2.1)

(i) The covariant divergence of A%, viz., A¥;, is at most of second-order
in the derivatives of both g;; and ¢.

It will be assumed that 4%, and all other functions which arise in this paper,
have as many continuous derivatives as we wish.
Due to equation (2.1) we see that condition (ii) is equivalent to

i .
047y _ g 2.2)
agrs,tvu
and
i, .
4% g 23)
00, rr

In order to simplify the form of the ensuing expressions we adopt the
following notation: If

Bii: = Biii(@nrs &nk s Bk, eas 95 9,5 D,ca)
is any quantity then we define

Be-ciabed _ oB:::
agab,cd
and > (2.4a)
Beiab - oB:::
ad),ab J
so that, for example,
Alsabed 947 ijsab _ 047
agab,cd ’ ad),ab
and r (2.4b)
Aij;ab;cd,ef;rs - 0 0 0 Aij
80 s agcd,ef 00 ap

4

Since 4% is a tensor density of the form (2.1) it is easily seen that repeated
partial differentiation of A¥ with respect to 8ap,cq and ¢ 4 will yield tensor
densities. Consequently the quantities presented in equation (2.4b) are ten-
sorial. Furthermore, since 4% is (in general) a concomitant of g;; and its
first three derivatives, along with ¢ and its first three derivatives, 4%;/dg,,
and 04Y,;/0¢ ,, are tensor densities. Thus equations (2.2) and (2.3) are
tensorial conditions.

Since A7 is a tensor density of the form (2.1) 4%:395.¢4 muyst satisfy the

tou
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‘invariance identity’ (see, ¢.g. Rund (1964, 1966), du Plessis (1969) or
Horndeski & Lovelock (1972)):

Ai}';ab,cd +Ai}';ac,§b _;_Az}’;ad, be _ 0 (2.5)
Through repeated use of (2.5) in conjunction with the fact that
Aij;ab,cd :Aij;ba,cd =Aij;ab,dc (2.6)

it is readily shown that
Aij;ab,cd = Aij;cd, ab (2‘7)

We shall now turn our attention to equations (2.2) and (2.3).
Due to the fact that A% is a tensor density of the form (2.1) we have

47 94”
Banj *
9gap abi g, ab,c

aAY aAY o
F o g AT P gy + AP (2.8)
TREEETY

Thus we see that (2.2) and (2.3) will hold if and only if

7 - ij;ab,cd
A7y = ap,c +AY &ab, cdj

iisab,cd O8abedi _ o (2.9)
agr.s', tou
and
iisab 99.ab7 _ (2.10)
0P rst

respectively. Upon performing the indicated differentiations we find that (2.9)
and (2.10) reduce to

Aiu;rs,fv +Ait;rs,vu +Aiv;r.sut =0 (2.1 1)
and
Ait;rs +Air;st +Ais;tr =0 (2.12)
respectively. '
Thus we have established
Theorem 2.1. A symmetric contravariant tensor density of the form
AY = AT gy 8h ¢ Bnr cds 95 Be3 B,cd) 2.1
will have its covariant divergence, AT ij» being at most of second-order in the
derivatives of both g;; and ¢ if and only if
Az‘u;rs,tv +Ait;rs,uu +Az‘v;rs,ut= 0 (2'11)
and
Ait;rs +Air;st +Ais;tr =0 (2’12)
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Due to our previous remarks it should be clear that equations (2.11) and
(2.12) are tensorial equations.

Through repeated use of equations (2.11) and (2.12) in conjunction with
equations (2.6) and the symmetries of 4%:9%:¢4 and A¥3%0 we may conclude
that whenever A7 satisfies conditions (i) and (ii) (see the first paragraph of
this section) then

Aij;ab,cd =ACd;£2b,if =Ailb§f];6’d (213)
and ;
giiiab = qabsii (2.14)

In order to proceed with our study of conditions (i) and (if) it will be con-
venient for us to introduce the following definition which is used by Lovelock
(1970b): A quantity Bi1i2---i2h—1i2n---12p (p > 1) is said to enjoy property
S if it satisfies the following three conditions:

(A) it is symmetric in iy, _4ia, fora=1,.. ., p;

(B) it is symmetric under the interchange of the pair (i,i,) with the pair
(fan_qian) forh=2,.. ., p;

(C) it satisfies the cyclic identity involving any three of the four indices
(1) on_qigp) forh=2,..,p; eg,whenh =2

Bi1i2i3i4...i2p +Bi2i3i1i4...i2p +Bi3i1i2i4...fzp =0

A quantity B?? is said to have property S if B%? = 5%
Using equations (2.5)-(2.7} and (2.11)-(2.14) we may conclude that
ADsTio,izias.sian —3ian _2,ian - 1ianiian+ 1i4p+ 2534+ 2k — 18R+ 2K
(2.15)

enjoys property S when the non-negative integers 4 and k are such that
h+k>=0. :
The following result has been established by Lovelock (1970b):

Lemma 2.1. If B'1-14M+2 is any quantity which has property S then it
vanishes whenever three (or more) indices are equal. In particular Bf1---1aM+2
vanishes identically (in a four-dimensional space) if M = 2.

Upon replacing Bi1-+-{aM+2, in the above lemma, by the tensor density
introduced in (2.15) we may conclude that

Corollary 2.1. Whenever k is an even non-negative integer and h + 3k > 2
then
A®31i2d31a5slan - 31an _2,04n— 1ian3ians 11an+ 25 AR+ 2k — 16an+ 2k =
(2.16)
Equation (2.16) will permit us to construct the most general symmetric con-

travariant tensor density of rank 2 which satisfies conditions (i) and (ii) in a
space of four-dimensions.
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To begin with when 2 = 2 and &k = 0 we may use (2.16) to conclude that
Afbsiiin.isiazisie,ivig =
Upon integrating this expression twice with respect to g.g, er We find

A = Wbcdef Seder i 2.17)

where 8% and %°%/ are concomitants of &> Gijn> O, 0,; and ¢ ;; which
enjoy property S.
Now it is easily seen that

oAl g s er = 3BT R ppar + TP

where J? is symmetric in ¢ and b and is a concomitant of &ij> &ij,n> $» ¢, and
¢ ;7. Consequently we can write (2.17) as follows:

A% = SabcéefRecdf.;. Bab (2.18)

where f%0 and *°%7 are functions of g, g, ns 6, 6,; and ¢ ;; which possess
property S. Clearly % and 3%°°%/ must be tensor densities.

We shall now show how to construct the 8’ in terms of ¢14p and tensor
densities which enjoy property S and are concomitants of g;j,¢and ¢ ;.

To begin with we may combine Corollary 2.1 (withk =2 and & = 1)
together with equation (2.18) to conclude that

Babcdef;hi — 6ab0def;hi(gij;gij,h s ¢’ i) (2.19)

In order to proceed further it will be necessary to make use of the following
result (the proof of which may be found in Horndeski (1971)):

Lemma 2.2. If

iy iy L
T,ll,;““ 7}11,,_;;(&1,&;‘,;1,gfj,hk,GS,9’5,1')

is a relative tensor density of class C which is of contravariant valence r and
covariant valence s and furthermore is such that

il...i sabed

f}n-f; =0
then

iq iy _ rpigend .
7}11.]'; - 7;11,_]:(81]’ ¢’ ¢,i)
Due to Lemma 2.2 equation {2.19) becomes
Babcdef;hi = Babcdef;hi(gij; ¢; (f’,i)

and thus

éabcdef - Eabcdejhi @, wi F aabcdef
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where £%0°9¢/ i an arbitrary tensor density with property S and a con-
comitant of g;;, ¢ and ¢ ;; and the o#P°@f are arbitrary functions of &ij>
8ij,n> ¢ and ¢ ; which en]oy property S. If in the above expression ¢ p; is
replaced by ¢| ni + ¢, T'"; then the tensorial properties of febeder, gabdefhi
and ¢)3; may be used together with Lemma 2.2 to conclude that

Babcdef = Eadeefhi(]f’m,' ¥ Eabcdef (2.20)

where £%2°% i5 an arbitrary tensor density with property S and a concomitant
ofg,-j, ¢and ¢ ;.

Similarly equations (2.18) and (2.20) may be employed in conjunction
with Corollary 2.1 (when /2 = 0 and k = 4) to show that

B = YA G abrerdimi + VP G oatyer
+ Y + Y (2.21)
where each y® is an arbitrary tensor density with property S and a con-

comitant of g, ¢ and ¢ ;.
Combining equations (2.18), (2.20) and (2.21) we find:

Aab= Eabcdeﬂzi Recdf ¢Ihi + Eabcdef Recdf
+ ll/ab(}defl’ll ¢]cd¢|ef¢]hi + wdbc‘def(plcd ¢1ef
+ wabcd(p{cd + lI/le (222)
Employing techniques similar to those used in Lovelock (1969, 1970b,

1971} and Horndeski & Lovelock {1972) it can be shown that the most general
tensor densities of the form

eil'--iZk = eil...i2k(gij; b9 i)

(k=1,...,4) which enjoy property S in a space of four-dimensions are given
by:

giriz = \/(g)Clgi1i2 + \/(g)cngailqyil (2.23)
gi1i2izig = \/(g)C3(gjli3gj2i4 +gi1i4g1'2i3 — 2g1'1i2gi3i4)
: +VAR)Ca(@ 197357274 + pP2gaght 3 + g1 plaghats
F piagingtis (gt pingsia 4 giaglaghia]) (204

g'1--76 = —— (C5¢,r¢,s + Cogyps){€'113157 faiales

\/(g)

+ 1i3i6reiaiaiss | iyiaisrgiaizies 4 (1ialerci2i3iss)(2.25)
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and
G
V(@)

+ f1i3ieirgiaiaisis 4 J173ieis daiaisiy 4 (daizisidiisigls

gil...ig = {€i1i3i5[7ei2i4i6i8 +Ei1i3i5i8€i2f4i6i7

+ €i2i3i5i86i1i4i6i7 + €i2i3i6i7€i1i4i5ig + ei2i3i6i8€i1i4i5i7}
(2.26)

where Cy, . . ., C7 are arbitrary functions of ¢ and p(=¢ ;¢ jgjj )

Making use of equations (2.23)~(2.26) together with the symmetry proper-
ties of the Riemann-Christoffel curvature tensor we find, after much simplifica-
tion, that (2.22) becomes

A% = @)K 1 5FR 78, MR + K 1558 P R g™
+ K38%9 87 0,.0" Ry’ + K48%32 67 010" 0,4 79, 1*
+K 585820, 01d" + Ked5e e 016" 81a701."
+ K857 ¢,/ + K85g§§zlgeb¢lc¢'f¢1dlh +Kog®
+K109%9'%} (2.27)

where Ky, . . ., K (o are arbitrary differentiable functions of ¢ and p.
Thus we have established

Theorem 2.2. In a space of dimension four the most general symmetric
contravariant tensor density of the form

b_ ) ) e
A%Y = A (g 85 13 8ig,nics B3 B B k)

which is such that A"b“, is at most of second-order in the derivatives of both
g;; and ¢ is given by equation (2.27).

3. The Consequences of Demanding that A% 5= qb“‘A

In the introduction it was pointed out that if the contravariant components,
A% of a symmetric tensor density are of the form

A% = A (g,:: 841 38, hics > D5 b k) (3.1)

and furthermore are such that 4%? ;, is at most of second-order in the
derivatives of both g;; and ¢ then a necessary condition for 4% to be the
Euler-Lagrange tensor of some Lagrange scalar density of the form (1.5)is
that there exists a scalar density 4 for which

A%, = ¢4 (3.2)
with
A = A(gy; 8ij,n i, nic > 85 6,5 G, k)
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Obviously those contravariant symmetric tensor densities of rank 2 which

have their components satisfying (3.1) and (3.2) are contained in the class of
symmetric tensor densities of rank 2 with components, 49, being of the form
(3.1) and such that 49, is at most of second-order in the derivatives of both
g;j and ¢. At the end of the preceding section the most general element of the
latter class of tensor densities was presented for spaces of four-dimensions. We
shall now proceed to examine the divergence of this tensor and as a consequence
determine the necessary and sufficient conditions under which it is of the form

(3‘%}s:ing equation (2.27) in conjunction with the Ricci and Bianchi identities
we find, after rearrangement, that
= \/(g){K35}‘%?§¢1f¢;c”’Rd +2K,8%8 6,0 PR "

+K38%920" ¢ RaF + K 5858 0 Ry 01d")

+ V©) 2K 18555 61,9701 " Rad ™

+ 3K 4855 ¢ Run M 01d 81}

+EVEK 18755 6 Runc "Rad* + \/(8) (K282 °Red™

+ 3K 7880 Ronc®} + 3 /(©)K 685738108 /8" Rimd™

+/(@) 2K 35%’135 ¢1p¢m 710" Ry d*

+ K858 0100 8" Rind"01e™¥} + V@)K 48550 01" $1a 9.

+ 2K 5828 01,07%01 To1a™

+K65}’§?§¢!h¢ £f¢ 11¢ lk}

+ 2 /(@)K 885191567910 010"

+ 23K 6857501987916 014 01

+ 2\/(g)K45?ﬁ?f¢ p¢lpf¢;c‘h¢id”¢i Ik

+ VK S550° 017 01a" + 2K 18501597701

+ K820 791.19914"} + V(@) {(2Kg + K 10)9150'®

+ K56%0'9,.°} + (8)8" Ko + pK'yo + 2K 108" ¢'° 015

+K 10016} (3.3)
where a prime denotes a partial derivative with respect to ¢ and a dot denotes

a partial derivative with respect to p.
Using the fact that in a space of four-dimensionst

8 fhsend T Ruc R g™ = 0 (3.4)
}'ﬁfg&lﬁl'f‘ﬁ]blh@ "Rd ko (3.5)

+ This type of approach to the derivation of dimensionally dependent identities is
due to Lovelock (1967, 1970a).
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and
aabfgr!;l |f¢\blh¢lc|j¢ldlk¢!elm =0 (36)

together with the symmetry properties of the generalised Kronecker delta it
can be shown that (3.3) may be rewritten as follows:

A%y = ()90 + V(@) (85550901 "Rae’™
+ B850/ 01" Rad* — v 8%¢ ¢Ip¢|pf¢|c¢!deeik
+ €830 P Rpy " 810 F 01" + nBLd Ry ™
+ 882 0,700V 016 + 208507 915?91
+£6,,0'%} (3.7)
where
o= Kzsg}?gf}zﬁbmétc‘j}?dekm

+ (K — K3)850). RaS* — 2K 38586701 01cRad "

~K 685 01c0'™ Rmal 90" — K 185585 Rp Rae™

+K 85 Red™ — 3K 588 6108 Romd ™

— 2K 58501,07°G1c01d" + EKaS 915" 01 010 01

—2K 68560 015 0100101

+ (K — Ke)die o1 " 01d 701" + (K's — K5)801c " 01a™

+ Ky + pK '+ 2K 1000 0050 + (K10 + K7))" (3.8)

a=2Ky —2K3+Ks +pKg;  B=2K, —Kj+K3+20K;3
7=4K3+Ke;  €=2Ky +3Kqy  p=2K3+3K,+ oKy
»=2Ks +3Ks — 3Ky +20Ks;  w=K, — K5 +Kg +pKg (3.9)

and
£=2Ky +K10— K7

In the light of equation (3.7) it is clear that A%, will satisfy (3.2) if and
only if there exists a scalar density B of the form

B = B(g;j; 8ij,n 3 &ij wies 958,13 0,47) (3.10)
which is such that

¢]aB = \/(g){a6h1k¢|d¢!c|hRde]k + ﬁah]k ¢lc¢|clhRdejk
v 5550 p 9P f¢1c¢ldee]k te 5§?§fn¢lpprj " ¢‘1cm¢'[e‘m
+ 8% Rinc™ + v85E 67 01 010" 01
+ 2(435 ¢|P¢1p]d¢;cle + E¢ ¢|ap} (3.1 1)
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Equation (3.11) must hold at every point of our manifold M (since the
field functions were assumed to be globally defined and we are working on
the domain of an arbitrary coordinate chart) and for every pseudo-Riemannian
metric and scalar field defined on M. Furthermore, we are regarding (3.11) as
an equation to be solved for B. It will now be shown that (3.11) admits a
solution if and only if

a=ﬁ=7=e=u=y=w=é=0 (312)
and that that solution is
B=0 (3.13)

Clearly if (3.12) holds then the solution to (3.11)is B = 0. Thus we need only
show that if (3.11) admits a solution, B, then (3.12) must hold, and con-
sequently B must vanish.

In order to establish this result we begin by differentiating (3.11) once
with respect to g5 5, and twice with respect to @ ,,, to obtain

papinnrs e = ¢ gy op O 0o gy Rovap 5 1

99,ig0% uw 0grs, tv
It is easily shown that
ORaped _ L(phik, 4 philk _ phifk _ phifk (3.15)
38mijx abea + Deadb de — Dadeb}
where
Dk, = L8 15t + 8151)(81,5% + 61,6%) (3.16)

Upon multiplying (3.14) by gigguwgrs We find that equations (3.15) and
{(3.16) may be used to rewrite the resultant expression as follows:

¢ gzqguwgr&B HEUWSTS 1 = 4\/(g)€(¢lagbt ""f’] tgv 4 ¢! ’g") (3.17)

Now given any scalar field there always locally exists a vector field X¢ for
which

0, X=0
and
X X2#0
If we now multiply (3.17) by X, X, we find that
0=4e/(g)¢"
and hence
€e=0

Using similar techniques it can be shown that if (3.11) holds then (3.12)
must hold and hence B must vanish.
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Consequently, 4%, as given in (3.7), will be of the form (3.2) if and only
if the ten scalar functions Ky,. . ., K¢ appearing in A% are related by the
eight partial differential equations obtained by setting each of the quantities
appearing in (3.9) equal to zero. Of these eight differential equations only six
are independent because
v=2a+y—2¢
and
w=24—ao +py —28
The remaining six equations imply that the ten functions appearing in 4%
must be related as follows if 495, is to satisfy (3.2):
Ko=-3Ky; Ks=2K;— 2Ky +4pKs;  Ke¢=—4K;
K, =4F+W; K,=-2F —4W —pKg;  and (3.18)
K.lo — —2F" - 4Wn _ pKlg _ ZKQ

where K1, K3, Kg and K are arbitrary functions of ¢ and p, W is an arbitrary
function of ¢ and F is given by the following indefinite integral

F=F(@$;p)= [ {K1(6:p) —K3(9;0) — 20K3(; p)}dp  (3.19)

Using equations (2.27) and (3.18) we obtain

Theorem 3.1. In a space of dimension four the most general symmetric
contravariant tensor density A®? which is a concomitant of Sif> and its first
two derivatives, together with ¢, and its first two derivatives, and is such that
its covariant divergence, A%y, is of the form

Aab“, = 01 A(gy; 84, 8y s 9> B3 B ic)
(where A is a scalar density) is given by
A% = K 15fie 1" Rad™ + @) AF + W)Sifie " Red "
+ V@)K 38%3 8" 9100 Rae’™ — VK 555 01" 01d 01"
+ \2)(2K 3 — 2K} +40K3)8%%5 ¢ 6, 14"
—4\/(g)Ks(S%?fgfb@c(ﬁm¢|d"‘¢|etk
~ V@QF +4W + pK )55 g9 + \£)KsbEe™ 010 91d"
+ V(@)Kog™ — \/(g)(2F" +4W" + pK g + 2K 9)¢'¢/” (3.20)

where Ky, K3, Kg and Ko are arbitrary scalar functions of ¢ and p, W is an
arbitrary scalar function of ¢, and F is given by equation (3.19).
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Due to equations (3.7), (3.8) and (3.18) we find that when A is given
by equation (3.20) then

A% = \/8)9!" K 185505 015" 01 'R 4™

+(Ky ~ K3)85¢ 0" Rdejk 2K 385 ¢'P ¢1p§f¢IcRdé{k

+4K 3855 01.0"" Rynd "1™ — 3K 185505, Ry R 4"

+GF + W)SHRA" — 3K 6856109 Rind ™

—2k85§§¢19¢1pe¢1c¢1d£k - %Kﬁ%‘f& ¢lbm¢§cu¢}dlk¢1elm

+ 81.{.36;‘]4]?‘1’“7¢|p‘f¢lc¢|d”¢’lelk +(4K;3 — %K&)‘Sﬁ?ﬁ ¢|clh¢|d'j¢|eik

+(2K5 ~ 2K} +4pK3 — Kg)85a0i. 794" + Ko

—pQ2F" +4W" + pKg + 2K§)

~2Q2F" + K+ pK + 2K )86 10

—(4F" + 8W" + 2pK g + 2K ) .'} (3.21)

Remark. Using equations (3.20) and (3.21) it is easy to show thatina
space of four-dimensions the most general divergence free symmetric tensor
density of the form (3.1) is given by:

A% = \[(g)c2beiie Red™ + \/(8)es8™

where ¢, and ¢, are arbitrary real constants. Thus in a four-dimensional space
there does not exist a genuine divergence free tensor density of the form (3.1);
i.e., A% must be independent of ¢ and its derivatives if it is to be divergence
free. ,

Employing techniques similar to those used to derive Theorem 3.1 we
obtain

Theorem 3.2. In spaces of dimension 2 and 3 the most general symmetric
contravariant tensor density A* which is a concomitant of 8ij» and its first
two derivatives, together with ¢, and its first two derivatives, and is such that
its covariant divergence, A%y, is of the form

Ay, = 1A (g5 845 847, i 8 6,5 B k)
(where A is a sealar density) is given by

A% = \JDK18%8 9 + V@K — 2K2)¢'%¢'? + \/(g)Kzg‘E; -

in a space of dimension 2 and
A= \ 2K 38%3 PR — 4\/(3)[335§§§geb¢(c1f¢|dm
V(@) (K4 + 4K3)5% 87 01 + \(@)Ka8%587 010970 )7
* VIQK 8™ — /(&)(0Ka + 4K5 + 2K 5)¢%0'” (3.23)

in a space of dimension 3, where K 1, . . ., K 5 are arbitrary scelar functions of
¢ and p.
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4. Lagrange Scalar Densities

As mentioned in the introduction Lovelock (1971) has shown (in a space of
arbitrary dimension) that if &/¥ is a symmetric tensor density of the form

AV = A U gne; gk, o’ 8, ca)
and is such that
;=0
then .o/ ¥ = E¥(L) for some Lagrange scalar density of the following type
L = L(gnk; 8nk, c; 8nk, cd)
Furthermore, Lovelock has shown that an L which yieldss/ ¥ = E¥(L), may
be obtained by examining g;;.o/”.

We now desire to determine a Lagrange scalar density of the form (1.5)
which yields the symmetric tensor density 4%? presented in equation (3.20),
for a space of dimension 4. As a consequence of the above remark it would
seem appropriate for us to begin our search with an examination of L = gapA®
and its associated Euler~Lagrange tensor, E#(L). (In fact there are general
grounds for expecting £%(g,, A %) to be ‘related’ to A%, see Lovelock (1972)).

Using equation (3.20) we find that in a space of dimension 4, g,;, 49 is
given by:

A= ) K185k 41 "Ra’™ — 3K 1855501191

+ K3855%01c0"Ral’™ — 4K 38560100 01 01"
+(F+2W)sHRS" +202K;5 — 2K1 +4pK3)6% 617 014"
~3(2F" +4W' + pKg) ' + 2K 5351018014
+4Ko — p(QF" +4W" + pK§ + 2K o)} @.1)

where F is given by (3.19).

We now wish to determine the Euler-Lagrange tensor (viz., E?) corre-
sponding to the scalar density presented in equation (4.1). Upon a closer

examination of this Lagrangian we see that in order to determine its Euler-
Lagrange tensor it would suffice to know

E® (L)
(@=1,...,6)in a space of arbitrary dimension, where the L,’s are given by:
Ly =~/@)M6" (4.2)
Ly = V@MBGR T — A\J)M38 501 014" 43)
L3 = \JQ)M385 0.9 0147 (4.4)

Lo = \@MadFi o1 Ra* — §/@MadFio o 0™ (4.5)
Ls = QMs85E ¢ Rae’™ — ADMs855 010 01a" 9" (4.6)
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and

Le = \/(&)M; “.7)
., Mg are arbitrary functions of ¢ and p.

Using techniques similar to those employed in Rund (1964, 1966) and
Horndeski & Lovelock (1972) it can be shown that if

where My, . .

L = L(g;5; 8ij, n3 &ij, nic: O3 B, 1> D, nic) (4.8)
then

ab _ ab, hk ab,h ab
EPL)= —n e 1y
and

(4.9)

EQLY= ™ + 0 — ¢
where

(4.10)

\
e 0L aL

0%ap,nic 0 ap ’

B _ bl ha )b
n R = J(g P (Mgl hagity
ﬂab = 1Rkbmh77hk’am "Rkamhﬂ'hk’bm

> 4.11)
—301957 - £759))% + 3L

and

oL
f"-a%

#1487

7/

Employing equations (3.15), (3.16), (4.9 and (4.11) we find, after a

lengthy, but straightforward, calculation, that in a space of any dimension
(for the details see Horndeski (1973))

E®(L )= g)pM 8% g™ ¢),'¢ — \/(g)Mlsg%ggeb@c(blf@dlh
+ V@M (3% — ¢'%9/") (4.12)

EP(Ly) = —&)M85555.8™ 010 "Ral* + \Ng) (oM, — $M,)5%8 8P R . /"
~2:/g) (201, +Mz)6$f%ge”¢|c'f¢|d“’

+ 4\/(g)M25%?I€gfb¢|c¢|h¢|d[j¢[e]k + 2 Ag) (M5 + 20M5)8% 70, J¢

—8\()M2855 8 910814 + 24/(2)pM58" — 2/(g)M39\%¢1®

(4.13)

E®(L3) = \Ag)(p* M3 + 30M3)6% 870 ¢,
—\/(g)(pM3 + %Ms)aacd eb

280070 + $\gM3p’g™®
~4\g) oM} ¢'® (4.14)
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E®(Lg) = -\/(g)M45?¢§g§{gghb@cqﬁ‘jqb;d’kRequ

and

+ \(©Map 5535818 01d R — 1/(2) pM 8558 Rog™

+ VM55 8™ 010 "Ra’

+ 3 V(@M s8%3L " 6100 010 9107 01,/

~$(@) (oM + Ma)o550e 01" 0100

+ A& (M + 20M )8 5™ 949 *
—ANAIMu %% e 0.0 04 9 + 2 \/(g)Mi{ﬁé‘f%fg%,cw(’ 2;‘;*:)

E(L5)= /() Msp® +3pMs)6%58 R g™

— &) (pMs + Ms)‘sf‘llcz?ié’fb $1c0"Rad*

—8)(2M s + 10pMs + 4p* M5)8 2580 0. V04"

+4 \/(g)(2M5 + PMS)S%%gfb¢tc¢m¢&du¢te1k

— &) (M + 4pM)8%5 2% 9.9V 9).” (4.16)

E®(Le)= \/(§)Ms0'*¢'® — 4 /(2)Mcg™ (4.17)

Making use of equations (4.1) and (4.12)-(4.17) we find that in a space of
four-dimensions

Eab(gchCd) = \/(g)pklsﬁcep];]ghbqjldlkRequ

+ VA2)pK 38535 8™ 10" Ra™ + \g) BT — W)6%58%R g™

d . .
-3 » (K )8%% g™ 0" 014 0y 1 F

—44/(2) % (K 3)85idee ™ 010" o1d 1

+ (&) (20K 1 + 6pK3 + 4p>K3)8 35 7 9,479 . 1*

+ /(@)K $8%88° 31087 014" + )~ +4W' ~ p?Ks)

x 8%.8091° + \A2) (oK g — 2K 5)g"

+ Q) (~2" +4W" + 2Ky — 20K o — p*K )¢ “0'®  (4.18)

where J = J(¢; p) is defined by the indefinite integral

J=f {5% (K 1(8:p)) — PK3(9:0) — 20 5% (K3(9:0)) | dp  (4.19)

and integration by parts has been used to show that

~F+pF=J (4.20)
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Upon comparing equation (4.18) with (3.20) we readily deduce thatin a
space of four-dimensions the symmetric tensor density presented in (3.20) is
the Euler-Lagrange tensor corresponding to

= \/(g);%g%g@clh}zdeik - %\/(g)%ﬁﬁ?:?@cm@d!j@;e‘k
+ \/(8)3{35ﬁ?§¢|c¢lhRdeik - 4\/(g)-y./a‘sﬁ7ﬁ¢|c¢lh¢|d|j¢1e‘k
VO (F+2H)8FRea™ + 2/(8) Q3 — 247, +4pA 38501 81"
BV@QF +4AW " + p A )¢ + 2 /(2) fsagﬁbtcﬁbl“f@dlh
+ A A s —pQF " +4W ™" + oA g + 20 9)} (4.21)

where

1 1
Ay = f;Kl(@p)dp; K =f;Ks(¢;p)dP

1 1 (4.22a)
%=f;Ks(¢;p)dp: %=p2fp'*§l<9(¢;p)dp

W= _Ww

and
F= [ {1@8:0) — H3(@:0) —2043(:p) dp  (4.22b)
To recapitulate the above work we have

Theorem 4.1. In a space of four-dimensions any symmetric contravariant
tensor density of rank 2 which is a concomitant of a pseudo-Riemannian metric
tensor (with components 8ij), and its first two derivatives, together with a
scalar field ¢, and its first two derivatives, and furthermore is such that its
components, A%, satisfy

A%y, = ¢|aA(gii; 8ij, > &ij, hic> 93 D, 15 D, i)

is the Euler-Lagrange tensor corresponding to a suitably chosen Lagrange
scalar density of the form presented in equation (4.21).

Remark. The Lagrangian which yields the tensor density mentioned in
Theorem 4.1 is unique only up to the addition of scalar densities of the form
(1.5) which yield identically vanishing Euler-Lagrange tensors upon varying
the g;’s.

As an immediate consequence of Theorem 4.1 we obtain

Theorem 4.2. In spaces of four-dimensions the most general Euler-Lagrange
equations which are at most of second-order in the derivatives of both gij and
¢, and which are derivable from a Lagrange scalar density of the form (1.5)
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can be obtained from the Lagrangian presented in equation (4.21) and are
given by

A% =0
and
2Qs,aAabIb -
Y

where A®? and A°Y, are given by equations (3.20) and (3.21) respectively.
The above theorem is false in spaces of dimension greater than 4. For if K
is an arbitrary scalar function of ¢ and p

L = (@)K 8% ¢10 "Rp"Rac’®
-3 \/(g)K5}z§§%e¢mIfﬁi;b[héic“Rde’k
+ 18K 69556, 05" 01 a0y * +

(where & is given by equation (4.21)) provides us with a counter-example.

In the introduction it was pointed out that the most general second-order
Euler-Lagrange tensors derivable from a Lagrange scalar density of the form
(1.1) (in a space of four-dimensions) are given by equations (1.2) and (1.3),
and may be obtained from the Lagrangian (1.4). It should be noted that the
primary difference between the Euler-Lagrange tensors (1.2), (1.3) and the
Fuler-Lagrange tensors derivable from & (viz., (3.20) and 2+/(g) times the
term appearing within curly brackets on the right-hand side of (3.21)) lie in
the following two areas:

(i) the latter Euler-Lagrange tensors involve a total of five arbitrary

functions (four are concomitants of ¢ and p and one is a function of
#), whereas the former Euler-Lagrange tensors involve only four
arbitrary functions (one is a concomitant of ¢ and p, and three are
functions of ¢);

(i) the latter Euler-Lagrange tensors are much more non-linear in the

second derivatives of ¢ and g;; than are the former.

If one were now to demand that the field equations derivable from (4.21)
be quasi-linear in the second derivatives of both g;; and ¢ (in the sense that
the coefficients of g;; i and @ i are at most functions of g; and ¢) then it
is easily shown that a Lagrangian which yields these quasi-linear field equations
is given by

0

Z = iR+ 20 +13) (4.23)
(where fy, f, and f5 are arbitrary functions of ¢) and the field equations are
V@GP — 18 + (2 — )99
+&P(f{ =32 +118%iea — 31311 =0 (4.24)
and

~ VIR ~ f2p — 228 Bjea + 3} =0 (4.25)
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Equations (4.24) and (4.25) embody the most general second-order quasi-
linear Euler-Lagrange equations which can be derived from a Lagrange scalar
density of the form (1.5) in a space of four-dimensions.

The Lagrange scalar density (4.23) is precisely the Lagrangian discussed in
detail by Bergmann (1968).

Remark. 1t is not difficult to prove that in any space of dimension >4 the
most general second-order Euler-Lagrange equations derivable from a scalar
density of the form (1.5) which are in addition quasi-linear in the second
derivatives of both g;; and ¢ are given by equations (4.24) and (4.25) and may
be obtained from the Bergmann Lagrangian (4.23).

In conclusion I would like to point out that the tensor densities presented
in equations (3.22) and (3.23) are the Euler~Lagrange tensors corresponding to

L= g) #16,.' + )My —2M2)p +2\/(8) My (426)
(in a space of two-dimensions) and
L3 = \Ng) M35 Re™ — 4\/(8)/35% 01 010"
+=23/(8)(p Mo+ 4 M50 + &) MaBF 010 01"
@B Ms ~ (oM s+ 4 M5+ 2. Ms)p] (4.27)

(in a space of three-dimensions) respectively, where

1 1
vfﬁf;K;(qS;p)dp; v/f2=pf;5Kz(¢;p)dp;

1
My = \/(P)f#Kg(&p)dp; Jlab\*/l—/;J%sz(‘b;P)dpl

and
1
M =p>? ?EKS@); p)dp
with Ky, . . ., K5 being the scalar functions which appear in equations (3.22)
and (3.23).

Consequently, in spaces of dimension two and three the most general
Euler-Lagrange equations which are at most of second order in the derivatives
of both g;; and ¢, and furthermore are derivable from a Lagrange scalar density
of the form (1.5), may be obtained from the Lagrangians (4.26) and (4.27)
respectively.
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